Iracionální nerovnice

Př.:

x2+2x+5>x7x2+2x+50D=420<0x70x7x7;)x2+2x+5>x214x+4916x>44x>114    x7;)x7<0x(,7)    xR\begin{align*} \sqrt{x^2 + 2x + 5} &> x - 7 \\[1em] x^2 + 2x + 5 &\ge 0 \\ D = 4 - 20 &< 0 \\[1em] x - 7 &\ge 0 \\ x &\ge 7 \\[0.5em] x &\in \langle7; \infin) \\[0.5em] x^2 + 2x + 5 &> x^2 - 14x + 49 \\ 16x &> 44 \\ x &> \frac{11}{4} \\ \implies x &\in \langle7; \infin) \\[1em] x - 7 &\lt 0 \\ x &\in (-\infin, 7) \\[1em] \implies x &\in \R \end{align*}

Př.:

99xx287x9xx280x29x+80(x1)(x8)0D=1;87x081(9xx28)49x2130x2729x+6480x1,2={7265;92}    x7265;92\begin{align*} 9\sqrt{9x - x^2 - 8} &\ge 7x \\[1em] 9x - x^2 - 8 &\ge 0 \\ x^2 - 9x + 8 &\le 0 \\ (x - 1)(x - 8) &\le 0 \\ D &= \langle1; 8\rangle \\[1em] 7x &\ge 0 \\ 81(9x - x^2 - 8) &\ge 49x^2 \\ 130x^2 - 729x + 648 &\le 0 \\ x_{1, 2} &= \left\{\frac{72}{65}; \frac{9}{2}\right\} \\ \implies x &\in \left\langle\frac{72}{65}; \frac{9}{2}\right\rangle \end{align*}